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Abstract

There are often many different policies or treatments that we could use to affect a target

outcome. For example, a pharmacy could send many different text messages to its cus-

tomers reminding them to get a flu vaccine. However, we often have no theoretical basis

to know which treatments work best in a given context or how effective they will be.

Researchers have attempted to solve this problem by simultaneously testing many treat-

ments (usually ten or more) in a single, large-scale experiment known as a megastudy.

Unfortunately, the effects of social science treatments are often so similar that megas-

tudies are vastly underpowered, even with tens or hundreds of thousands of partici-

pants. We document this problem in three prominent megastudies recently published in

top journals. Specifically, we show that we should be highly uncertain about the best-

performing treatment’s effectiveness and that the treatment effects are more similar

than conventional estimates suggest. We then show that megastudies can substantially

increase their power using adaptive random assignment algorithms which dispropor-

tionately assign participants to more promising treatments. Most importantly, we

provide an open-research software package for running online megastudies using adap-

tive random assignment documented here https://dsbowen.gitlab.io/hemlock/1.
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1 Introduction

There are often many different policies or treatments that we could use to affect a target

outcome. For example, a pharmacy could send many different text messages to its customers

reminding them to get a flu vaccine. However, we often have no theoretical basis to know

which treatments work best in a given context or how effective they will be. Recent research

suggests that individual behavioral scientists predict which of two behavioral interventions

is more effective with only 65% accuracy [Otis, 2022]. Additionally, simple heuristics like

“behavioral interventions have no effect” predict treatment effects at least as well as pro-

fessional behavioral scientists [Bowen, 2022a]. These findings highlight the need for better

social science experiments.

Researchers have attempted to solve this problem by simultaneously testing many treat-

ments (usually ten or more) in a single, large-scale experiment known as a megastudy [Milk-

man et al., 2021a]. Megastudies have two advantages over the traditional approach to science

[Milkman et al., 2021a, Cortese, 2019]. First, megastudies aim to accelerate scientific research

by testing many treatments simultaneously. It is faster to test many treatments in a single,

large-scale study than to test one treatment at a time across many small-scale studies. Sec-

ond, megastudies provide a level playing field for many different treatments. Levelling the

playing field allows for more direct comparisons between treatments than separate studies,

which may use different populations, tasks, and target outcomes.

Researchers have used megastudies to test the effectiveness of many text messages re-

minding patients to get vaccinated [Milkman et al., 2021b, 2022, Banerjee et al., 2021],

behavioral nudges encouraging 24 Hour Fitness customers to exercise more often [Milkman

et al., 2021a], monetary and social incentives to exert effort [DellaVigna and Pope, 2018],

behavioral interventions to decrease implicit racial bias [Lai et al., 2014], donation match-

ing schemes to increase charitable giving [Karlan and List, 2007], job training programs to

increase employment among refugees in Jordan [Caria et al., 2020], and interventions to

improve tax collection in Poland [Hernandez et al., 2017].
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Unfortunately, the effects of social science treatments are often so similar that megas-

tudies are vastly underpowered, even with tens or hundreds of thousands of participants.

We suggest this problem has gone unnoticed because megastudy researchers often report

traditional estimates (like ordinary least squares) as their primary analysis [Milkman et al.,

2021a,b, 2022, DellaVigna and Pope, 2018, Schwitzgebel, 2019]. This leads researchers to

overestimate the best-performing treatment’s effectiveness and exaggerate differences be-

tween treatment effects.

For example, consider a recent megastudy that used text message treatments to encourage

Penn Medicine and Geisinger Health patients to get a flu vaccine. The megastudy randomly

assigned participants to one of 19 treatments or a control condition, with about 2,365 par-

ticipants per condition. The treatments differed in the text message phrasing, timing, and

the number of messages sent. Participants in the control condition had a vaccination rate of

42%. The average treatment increased vaccination rates by 2.1 percentage points to 44.1%.

Participants assigned to the best-performing treatment had a vaccination rate 4.6 percentage

points higher than the control condition. Figure 1 of the Penn-Geisinger flu megastudy pa-

per displays the treatment effects as estimated by ordinary least squares (OLS). The authors

reported that their “best-performing treatment [increased flu vaccinations] by an estimated

[4.6 / 42 =] 11%.” Seeing a plot of the OLS estimates, readers of this paper might con-

clude that the best-performing treatment is 4.6 / 2.1 = 2.2 times as effective as the average

treatment.

For comparison, imagine running a “coin-flipping” megastudy. We will ask 19 people to

flip the same “treatment coin” and one to flip a “control coin.” Each person flips their coin

about 2,365 times. The true probability of getting heads with the control coin is 42%. The

true probability of getting heads with the treatment coin is 2.1 percentage points higher;

44.1%. Notice that we are simulating what the results of the Penn-Geisinger flu megastudy

would have looked like if all the treatments had the same effect. Across 1,000 simulations of

the coin-flipping megastudy, the “best-performing coin-flipper” gets heads 10% more often
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than the “control coin-flipper” on average. Following the Penn-Geisinger flu megastudy

paper, we would report that our best-performing coin-flipper increased our probability of

getting heads by an estimated 10%. Across the simulations, OLS estimates would seem

to show that the best-performing coin-flipper is 2.3 times as “effective” at increasing our

probability of getting heads compared to the average person flipping the treatment coin.

These conclusions are clearly incorrect. The best-performing coin-flipper is not better at

flipping coins than anyone else and is only 2.1 / 42 = 5% more likely to get heads than the

control coin-flipper. Given how similar the coin-flipping megastudy’s estimates are to those

of the Penn-Geisinger flu megastudy, the Penn-Geisinger flu megastudy’s conclusions may

also be incorrect.

1.1 The winner’s curse

The coin-flipping megastudy demonstrates a general point: conventional estimates like OLS

are incorrect when estimating megastudy effects. One way in which conventional estimates

are inaccurate is the winner’s curse. According to the winner’s curse, whenever we select the

treatment that appears most effective based on noisy estimates, the conventional estimate

of that treatment’s effect is upward-biased [Andrews et al., 2019, 2022]. In our coin-flipping

megastudy, the best-performing coin-flipper was only 2.1 percentage points more likely to

get heads than the control coin-flipper. However, in our simulations, OLS estimated that

the best-performing coin-flipper was 4.0 percentage points more likely to get heads than

the control coin-flipper. For the same reason, the conventional confidence interval will have

incorrect coverage. For example, the best-performing treatment’s true effect will fall within

its 95% OLS confidence interval less than 95% of the time.

We use two types of confidence intervals to address this problem: projection [Romano

and Wolf, 2005, Kitagawa and Tetenov, 2018] and hybrid [Andrews et al., 2019, 2022] confi-

dence intervals implemented in the multiple-inference statistics package [Bowen, 2022b].

Projection and hybrid confidence intervals lengthen conventional confidence intervals to ac-
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Figure 1: Comparison of OLS, projection, and hybrid confidence intervals for the best-
performing treatment in the Penn-Geisinger flu megastudy. The red vertical line is the
average effect across all treatments.

count for the uncertainty introduced by selecting the best-performing treatment (see section

4.1 for details). Both have correct coverage, meaning that the best-performing treatment’s

true effect falls within the 95% projection and hybrid confidence intervals 95% of the time.

Figure 1 shows that the 95% projection and hybrid confidence intervals for the best-

performing treatment in the Penn-Geisinger flu megastudy are longer than the 95% OLS

confidence interval. According to OLS, there is a 95% chance that the vaccination rate of

the best-performing text message nudge is greater than 44.1% - the average vaccination rate

across all treatments. However, the projection and hybrid confidence intervals suggest that

the best-performing treatment’s vaccination rate may be as low as 43.5%.

We apply projection and hybrid confidence intervals to two other megastudies for robust-

ness. The second megastudy we analyzed (the “exercise megastudy”) used 53 behavioral

nudges to encourage 60,000 24-Hour Fitness customers to exercise more [Milkman et al.,

2021a]. The treatments involved planning, reminders, microincentives, and other interven-

tions. The researchers defined the treatment effects as the increase in weekly gym visits

during a four-week intervention period compared to a control condition.

The third megastudy we analyzed (the “Walmart flu megastudy”) was similar to the

Penn-Geisinger flu megastudy. It used 22 text-message treatments to encourage 680,000
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Table 1: Winner’s curse

Lower bound of 95% CI

Megastudy Avg. outcome OLS Projection Hybrid

Penn-Geisinger flu 0.439 0.446 0.437 0.438
Exercise 0.166 0.204 0.070 -0.027
Walmart flu 0.314 0.318 0.315 0.314

Comparison of the lower bound of the 95% OLS, projection, and hybrid confidence intervals for the best-performing treatments. The

Penn-Geisinger and Walmart flu megastudies measure vaccination rates. The exercise megastudy measures the increase in weekly gym

visits compared to a control condition during a four-week intervention period.

Walmart customers to get a flu vaccine [Milkman et al., 2022]. As in the Penn-Geisinger flu

megastudy, the treatments differed in the text message phrasing, timing, and the number of

messages sent. The researchers defined treatment effects as the increase in vaccination rates

compared to participants in a control condition who did not receive a text.

Table 1 shows the 95% OLS, projection, and hybrid confidence intervals for all three

megastudies we analyzed. According to OLS, there is a 95% chance that the best-performing

behavioral nudge will increase exercise by at least one gym visit every five weeks compared

to the control condition. However, the projection confidence interval suggests that the best-

performing nudge may increase exercise by as little as one gym visit every 14 weeks, and

the hybrid confidence interval suggests that the best-performing nudge may even decrease

exercise.

The OLS, projection, and hybrid confidence intervals are similar for the Walmart flu

megastudy. All three agree that the vaccination rate for the best-performing text message

nudge is at least 31.4-31.8%. For comparison, the average vaccination rate across all treat-

ments was 31.4%.

1.2 Fictitious variation

Another problem with OLS estimates in the context of megastudies is fictitious variation.

Fictitious variation makes it seem like some treatments are much more effective than others,
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even when the treatment effects are similar. In our coin-flipping megastudy, all treatment

coin-flippers had the same probability of getting heads. However, OLS estimates made it

seem like some people were much better at flipping coins than others.

We use Bayesian shrinkage estimators to address this problem. Bayesian shrinkage esti-

mators begin with a prior distribution and then estimate a posterior distribution by “shrink-

ing” the OLS estimates towards the mean of the prior distribution. Many Bayesian estima-

tors have a lower risk (expected mean squared error) than OLS. The James-Stein Bayesian

estimator dominates OLS, meaning it has a lower risk no matter the true treatment effects

[James and Stein, 1992, Stein et al., 1956].

For robustness, we apply at least four types of Bayesian estimators to each megastudy

dataset (see Section 4.2 for details) [Stein et al., 1956, James and Stein, 1992, Dimmery et al.,

2019, Bock, 1975, Cai et al., 2021, Brown and Greenshtein, 2009]. Because these Bayesian

estimators sometimes give different results, we use 50-by-2 repeated cross-validation, strati-

fying by treatment and grouping by participant, to determine which estimator is best. We

measure cross-validation performance using mean squared error, mean absolute error, and

log-likelihood.

Figure 2 shows that the OLS estimates are more spread out than those of five Bayesian

estimators for the Penn-Geisinger flu megastudy. According to OLS, the standard deviation

of the true vaccination rates is 13 people per thousand. However, according to the Bayesian

estimators, the standard deviation is at most five people thousand. Bayesian estimators

shrink the estimated vaccination rates towards the mean (i.e., the average vaccination rate

across all treatments) by at least 71% on average across all treatments.

Figure 3 plots the cross-validation mean squared error for OLS and Bayesian estima-

tors for the Penn-Geisinger flu megastudy. The Bayesian estimator with the best cross-

validation performance on all three metrics (mean squared error, mean absolute error, and

log-likelihood) was the beta-binomial model (a beta-prior, binomial-likelihood model fit us-

ing maximum likelihood estimation). This estimator shrinks the estimated vaccination rates
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Figure 2: Comparison of OLS and empirical Bayes estimates for the Penn-Geisinger flu
megastudy.

Figure 3: Comparison of OLS and Bayesian estimators in terms of cross-validation mean
squared error for the Penn-Geisinger flu megastudy.

towards the mean by 85%. The second-best Bayesian estimator according to all three metrics

was the normal model (a normal-prior, normal-likelihood model fit using maximum likelihood

estimation). This estimator shrinks vaccination rates towards the mean by 88%.

Notably, the Penn-Geisinger flu megastudy fails to reject the null hypothesis that all

text message treatments are equally effective [Milkman et al., 2021b]. Bayesian estimates

are therefore more consistent with the Penn-Geisinger flu megastudy’s findings than OLS

estimates. They are also consistent with more recent research suggesting that the language

used by the best-performing text message is no more effective than simply informing a patient

that a vaccine is available [Buttenheim et al., 2022].
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Table 2: Fictitious variation

Megastudy Estimator SD Shrinkage MSE

Penn-Geisinger flu OLS 0.013 0% 4.11e-4
Normal (MLE 0.003 88% 2.61e-4
James-Stein 0.005 75% 2.64e-4
Bock 0.005 71% 2.66e-4
Nonparametric 0.004 78% 2.71e-4
BetaBinom (MLE) 0.004 85% 2.59e-4

Exercise OLS 0.130 0% 3.09e-2
Normal (MLE) 0.044 77% 1.97e-2
James-Stein 0.108 20% 2.62e-2
Bock 0.121 8% 2.88e-2
Nonparametric 0.050 77% 2.01e-2

Walmart flu OLS 0.006 0% 2.93e-5
Normal (MLE) 0.005 24% 2.53e-5
James-Stein 0.005 20% 2.51e-5
Bock 0.005 19% 2.51e-5
Nonparametric 0.005 7% 2.45e-5
BetaBinom (MLE) 0.005 24% 2.51e-5

Comparison of OLS and Bayesian estimators in terms of the standard deviation of effects (SD), average shrinkage, and cross-validation

mean squared error (MSE). The bold lines are the estimators with the lowest cross-validation mean squared error for each study.

Table 2 shows the estimated standard deviations, shrinkage, and cross-validation mean

squared error for all three megastudies according to OLS and Bayesian estimators. Bayesian

estimators shrink the estimated increase in weekly gym visits by 8%-77% for the exercise

megastudy. Specifically, the Bock and James-Stein estimators exhibit slight shrinkage (8%

and 20%, respectively). In contrast, the normal and nonparametric models both exhibit 77%

shrinkage. Cross-validation suggests that the normal and nonparametric models are more

accurate than the Bock and James-Stein models, beating them on all three performance met-

rics at least 91% of the time across all repetitions and folds. Therefore, the most appropriate

amount of shrinkage is likely 77%.

Bayesian estimators shrink the estimated vaccination rates by 7-24% in the Walmart flu

megastudy. The estimator that performed best on all three cross-validation metrics was the

nonparametric model. This model exhibits only 7% shrinkage.

One interpretation of the Walmart flu megastudy results is that, with 680,000 participants
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Figure 4: Comparison of OLS and nonparametric empirical Bayes estimates for the Walmart
flu megastudy.

spread across 22 treatments, OLS estimates are very accurate. However, the nonparamet-

ric model’s posterior estimates and prior distribution suggest an alternative interpretation.

Figure 4 plots the estimated effects. Its y-axis shows that ten of the best-performing 11

treatments involved texting participants multiple times over multiple days, while ten of the

worst-performing 11 treatments involved texting participants on only a single day. This

pattern is consistent with the fact that spaced repetition is an effective tool for improv-

ing memory [Ausubel and Youssef, 1965, Ebbinghaus, 2013, Melton, 1970, Dempster, 1989].

Figure 5 shows that the nonparametric Bayesian prior is consistent with the spaced repeti-

tion interpretation. The prior is bimodal, with one mode near the “single-day” treatments’

average vaccination rate and the other mode near the “multi-day” treatments’ average vac-

cination rate. Consequently, the nonparametric Bayesian estimates in Figure 4 form two

clusters: one for single-day treatments and the other for multi-day treatments.

We applied Bayesian shrinkage estimators to only the 11 multi-day treatments for robust-

ness. The Bayesian estimators exhibit 72-100% shrinkage, further underscoring the need to

make megastudies more effective. Even with more than 300,000 participants spread across

the 11 multi-day treatments, naive random assignment cannot distinguish which is most

effective.
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Figure 5: Nonparametric Bayesian prior for the Walmart flu megastudy.

1.3 Adaptive random assignment

So far, we have argued that megastudies are a potentially important tool for social science

research but that incorrect statistical analyses have exaggerated their impact. Therefore, to

live up to their potential, we need new and more effective methods for running megastudies.

This paper demonstrates the benefits of one such method - adaptive random assignment - and

introduces a new open-research software package for running adaptive random assignment

in online megastudies.

Researchers may have many goals when running megastudies. Three common goals are

maximizing cumulative value (regret minimization), identifying the most effective treatment

(best-arm identification), and learning. For example, the researchers who conducted the

Penn-Geisinger flu megastudy may want to maximize the number of patients vaccinated

throughout the flu season, identify the text message that gets the most people vaccinated,

or learn about the differences in effectiveness between the text message treatments.

Many megastudies assign participants using naive random assignment, in which re-

searchers assign an equal number of participants to each treatment [Milkman et al., 2021a,b,

2022, Schwitzgebel, 2019, Karlan and List, 2007, DellaVigna and Pope, 2018]. Unfortunately,

naive random assignment is not the best strategy for any of these three goals. For example,

Thompson sampling and expected improvement are better assignment strategies for regret
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minimization [Chapelle and Li, 2011, Wang et al., 2016], exploration sampling and GAP-

based algorithms are better for best-arm identification [Kasy and Sautmann, 2021, Audibert

et al., 2010], and active learning algorithms are better for learning [Settles, 2009].

We refer to these alternative assignment strategies as adaptive random assignment. They

are adaptive because the probability of assigning a participant to each treatment changes

throughout the experiment. They are also random because they assign participants inde-

pendently of the participant’s characteristics.

Adaptive assignment improves experimental research in many fields. Adaptive designs

have been used to increase ad click-throughs [Dimmery et al., 2019], improve breast cancer

treatments [Barker et al., 2009], maximize power for multiple hypothesis tests [Jobjörnsson

et al., 2021], and facilitate job search [Caria et al., 2020]. Political scientists are also beginning

to see the benefits of adaptive designs [Offer-Westort et al., 2021]. Adaptive random assign-

ment is more efficient than naive random assignment when testing many treatments. For

example, if our goal is to identify the most effective treatment, naive random assignment will

waste large numbers of participants on ineffective treatments. By contrast, best-arm identifi-

cation algorithms disproportionately allocate participants to the most promising treatments.

Assigning more participants to best-performing treatments allows us to more precisely esti-

mate their effects, which in turn allows us to distinguish between best-performing treatments

more accurately.

While there are some examples of social scientists using adaptive random assignment,

these are the exception rather than the rule. We argue that adaptive random assignment

should become the default technique for megastudies by demonstrating its advantage over

naive random assignment in simulations and an experiment. Specifically, we evaluate the

benefits of adaptive random assignment according to three metrics: effectiveness, probability

of identifying the best treatment, and estimation precision.

Effectiveness. There are many ways to measure a megastudy’s effectiveness. One useful

definition is the difference between the true effect of the best-performing treatment and the
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average effect across all treatments. This measure captures the difference between the world

in which researchers ran a megastudy and a hypothetical world in which they did not.

For example, suppose researchers had not run the Penn-Geisinger flu megastudy. In that

case, Penn Medicine and Geisinger Health could have encouraged their patients to get a flu

vaccine by randomly choosing which of the 19 text messages to send them. The percentage

of people vaccinated in this world would be the average effect across all treatments. So, the

megastudy’s effectiveness is the difference between the true effect of the text message Penn

Medicine and Geisinger Health chose because of the megastudy and the average effect across

all treatments.

Probability of identifying the best treatment. How likely is it that the best-

performing treatment is the most effective treatment?

Estimation precision. How long is the 95% projection confidence interval for the

best-performing treatment?

2 Results

2.1 Simulations

We used the data from the Penn-Geisinger flu megastudy, exercise megastudy, and Walmart

flu megastudy to simulate what would have happened if researchers had run these studies

using adaptive random assignment instead of naive random assignment assuming their goal

was to identify the most effective treatment. Section 4.4 describes our simulation strategy

in more detail.

We compared naive random assignment to two adaptive random assignment strategies

for best-arm identification in our simulations. The first adaptive assignment algorithm we

considered was exploration sampling. Exploration sampling assigns participants to each

treatment k with a probability proportional to pk(1− pk) where pk is the probability that k

is the truly best treatment [Kasy and Sautmann, 2021]. Notice that we will not assign any
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participants to treatment k when we are sure about whether it is the best treatment (i.e.,

when pk = 0 or pk = 1). We will assign the most participants to treatment k when we are

maximally uncertain about whether k is the best treatment (i.e., when pk = .5). This makes

exploration sampling a useful algorithm for quickly learning which treatment is best.

Of course, we do not know pk, so we need to estimate it. An easy way to do this is to

repeatedly sample from the joint distribution of OLS estimates2.

The second adaptive assignment algorithm we considered was successive rejects. Suc-

cessive rejects divides the experiment into K − 1 successions, where K is the number of

treatments [Audibert et al., 2010]. After each succession, successive rejects drops the worst-

performing remaining treatment. The one treatment that remains after K − 1 successions is

the best-performing treatment. Successive rejects optimally determines the number of par-

ticipants in each succession to maximize the probability of identifying the best treatment.

Both adaptive random assignment algorithms (exploration sampling and successive re-

jects) outperformed naive random and performed similarly to each other. Figure 6 shows the

simulation results for the Penn-Geisinger flu megastudy. At 50,000 participants, adaptive

random assignment would have increased the effectiveness of this megastudy by 22% (2-3

people vaccinated per thousand), improved the probability of identifying the truly best treat-

ment by 42% (14 percentage points), and shortened the 95% projection confidence interval

by half (3 people per hundred).

Table 3 shows the percent improvement of exploration sampling and successive rejects

compared to naive random assignment. Using the Penn-Geisinger flu, Walmart flu, and ex-

ercise megastudy data, we estimate that adaptive random assignment can make megastudies

11-59% more effective. Additionally, megastudies can increase their chances of identifying

the truly best treatment by 10-15 percentage points and shorten their projection confidence

2While the best estimation strategy for large sample sizes may be to sample from a joint posterior ob-
tained using a Bayesian estimator [Dimmery et al., 2019], we found that sampling from the joint distribution
of OLS estimates was more effective for our datasets and sample sizes. For a Bayesian interpretation, note
that the joint distribution of OLS estimates is equivalent to the joint posterior of a Bayesian estimator with
an improper prior.
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Figure 6: Comparison of naive random assignment and adaptive random assignment for the
Penn-Geisinger flu megastudy.
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Table 3: Simulated effectiveness of adaptive random assignment

Percent improvement

Megastudy N Exp. sampling Successive rejects

Penn-Geisinger flu 10,000 26 27
50,000 17 19
100,000 11 11

Walmart flu 10,000 47 46
50,000 27 24
100,000 20 22

Exercise 10,000 50 59
50,000 19 20
100,000 12 12

Percent improvement of exploration sampling and successive rejects over naive random assignment.

intervals by nearly 50% by using adaptive random assignment instead of naive random assign-

ment (see Appendix 5). Alternatively, researchers can achieve similar results using adaptive

random assignment with half as many participants.

2.2 Experiment

One reason adaptive random assignment is uncommon in social science is that it is challenging

to implement. We created a user-friendly Qualtrics-like software for running adaptive random

assignment in online megastudies to address this problem.

We demonstrate our software in a preregistered 1,500-person megastudy using a “needle-

in-a-haystack” design. The needle-in-a-haystack design has one treatment (the needle) that

we know works better than the others (the haystack). Following [DellaVigna and Pope, 2018],

we recruited participants from Amazon Mechanical Turk to perform an effortful key-pressing

task. Our goal was to identify the treatment that induced the most effort. Specifically, we

gave participants up to 10 minutes to alternate between pressing “a” and “b.” Each time

they pressed “a” then “b,” they scored a point. The truly best treatment (the needle) paid

participants $0.01 per 100 points they scored. Additionally, we had 59 treatments (the

haystack) in which we did not pay participants based on the number of points they scored.

15



Based on advanced microeconomic theory, we assumed participants would put more effort

into the task the more we paid them to do so. We wanted to see that adaptive random

assignment would identify the truly best treatment and assign more participants to the truly

best treatment compared to the haystack treatments.

We preregistered that our adaptive random assignment algorithm would identify the truly

best treatment. We also preregistered that we would run simulations with our experiment

data to estimate what our results would have looked like if we had used naive random

assignment instead. Specifically, if we had used naive random assignment, 1) how likely

would we have been to identify the truly best treatment, and 2) how long would the best-

performing treatment’s 95% projection confidence interval have been?

Our simulations suggest that we would have had only a 55% chance of identifying the

truly best treatment if we had used naive random assignment. Additionally, the projection

confidence interval around the truly best treatment would have been twice as long (p < .001).

To obtain a projection confidence interval this short using naive random assignment, we

would have had to cut the number of treatments we used from 60 to 10 (one needle treatment

and nine haystack treatments) or quadruple our sample size.

3 Discussion

There is a recent trend in social science to run megastudies, in which researchers test a

large number of treatments in a single, large-scale study. Our reanalysis of three prominent

megastudies suggests that researchers who run megastudies often unintentionally exaggerate

the effectiveness of their best-performing treatment (the winner’s curse) and the variability

in treatment effects (fictitious variation). Because megastudies have been less effective than

we want them to be, it is essential to find ways of making megastudies more effective.

We show that adaptive random assignment is a powerful tool for making megastudies

more effective. Using data from three prominent megastudies recently published in top
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Figure 7: Comparison of adaptive random assignment (exploration sampling) and naive
random assignment for our effort experiment. The blue vertical line is the actual sample
size of our experiment. The blue horizontal line on the confidence interval plot (bottom)
is the length of the projection confidence interval for the best-performing treatment in our
experiment.
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journals, simulation results suggest that adaptive random assignment can make megastudies

11-59% more effective. Additionally, adaptive random assignment substantially increases the

probability that researchers will identify the truly best treatment and gives researchers more

precise estimates of the best-performing treatment’s effect. Alternatively, adaptive random

assignment can achieve similar performance as naive random assignment with half as many

participants.

Social scientists do not use adaptive random assignment partly because naive random as-

signment is easier to implement. To address this problem, we introduce a new, Qualtrics-like

software for running adaptive random assignment in online megastudies. We demonstrate

our software by running a preregistered megastudy in which we use adaptive random as-

signment to “find the needle in the haystack.” Using simulations, we show that we would

have been much less likely to identify the truly best treatment if we had used naive random

assignment instead.

4 Methods

4.1 Projection and hybrid confidence intervals

Projection [Romano and Wolf, 2005, Kitagawa and Tetenov, 2018] and hybrid [Andrews

et al., 2019, 2022] confidence intervals lengthen conventional confidence intervals, such as

OLS confidence intervals, to account for additional uncertainty introduced by selecting the

best-performing treatment.

Projection confidence intervals begin by forming a K-dimensional rectangle such that

all of the true treatment effects fall within this rectangle with 95% probability, where K

is the number of treatments in the megastudy. Then, they “project” this K-dimensional

rectangle onto the dimension for a specific treatment to obtain the projection confidence

interval for that treatment. By construction, all of the true treatment effects will fall within

their projection confidence interval with 95% probability. Therefore, each treatment effect,
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including the best-performing treatment effect, falls within its 95% projection confidence

interval with 95% probability.

Hybrid confidence intervals combine projection confidence intervals with a conditional

estimator. The conditional estimator estimates the effect of the best-performing treatment

conditioning on why it was the best-performing treatment (i.e., that it beat all the other

treatments according to OLS estimates). However, conditional confidence intervals obtained

using the conditional estimator are often unrealistically long. Hybrid confidence intervals

shorten conditional confidence intervals using a projection confidence interval (roughly, by

truncating the conditional confidence interval to a very wide projection confidence interval).

Hybrid confidence intervals also have correct coverage but are often shorter than projection

confidence intervals.

4.2 Bayesian estimators

Bayesian estimators begin with a prior distribution and then update this prior based on data

using Bayes’ Theorem to form a posterior distribution. Classical Bayesian estimators take

the prior distribution as a given. We favor empirical Bayes estimators, which estimate the

prior distribution based on data. To see the logic of empirical Bayes, imagine ”locking up”

the data from one of the 19 treatments in the Penn-Geisinger flu megastudy. Suppose we

observe that the remaining 18 treatments increase vaccination rates by 2.1 percentage points

on average compared to the control condition. Then, our prior belief about the ”locked up”

treatment is that it will increase vaccination rates by roughly 2.1 percentage points.

Empirical Bayes estimators can be parametric or nonparametric. Parametric empiri-

cal Bayes estimators take the shape of the prior distribution as given. For example, we

might assume the prior is normally distributed and estimate its mean and standard de-

viation. Nonparametric empirical Bayes estimators do not assume the shape of the prior

distribution. Nonparametric empirical Bayes estimators are, therefore, more flexible. How-

ever, parametric empirical Bayes estimators may perform better when estimating a small
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number of treatments if its parametric assumptions are approximately correct. For robust-

ness, we apply several empirical Bayes estimators, both parametric and nonparametric. The

estimators we use are:

1. Normal (MLE). This estimator assumes that the prior is normally distributed and es-

timates the mean and standard deviation using maximum likelihood estimation (MLE).

2. James-Stein. This estimator also assumes that the prior is normally distributed but

estimates the mean and standard deviation using unbiased estimators of relevant trans-

formations of the mean and standard deviation [James and Stein, 1992, Stein et al.,

1956, Dimmery et al., 2019]. The James-Stein estimator outperforms conventional

estimators like OLS in expectation even when the prior is not normally distributed.

3. Bock. Bock’s estimator is a generalization of the James-Stein estimator for arbitrary

covariance matrices.

4. BetaBinomial (MLE). This estimator assumes that the prior follows a beta dis-

tribution and fits the prior parameters using maximum likelihood estimation. This

parametric assumption is common for data with a binary outcome, such as the Penn-

Geisinger and Walmart flu megastudies [Dimmery et al., 2019].

5. Nonparametric. A nonparametric Bayesian estimator that uses a Dirac-delta prior

[Brown and Greenshtein, 2009, Cai et al., 2021].

4.3 Megastudy data

The raw data from the exercise megastudy are publicly available. We obtained OLS esti-

mates using the analysis described in the exercise megastudy’s supplementary material. We

used these OLS estimates to perform multiple inference corrections (e.g., hybrid confidence

intervals and Bayesian estimation).
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The exercise megastudy data contains information on weekly gym visits for all par-

ticipants during the intervention period (4 weeks) and pre-intervention period (usually 52

weeks) for about 56 rows per participant. With 60,000 participants, this is a prohibitively

large dataset for running thousands of adaptive random assignment simulations. So, we

collapsed the data to one row per participant for computational tractability. Specifically, we

defined the target outcome as the difference between average weekly gym visits during and

before the intervention period.

The Penn-Geisinger and Walmart flu megastudies used patient health data and are there-

fore not publicly available. Fortunately, we need only the summary statistics (the estimated

means and covariance matrices) to perform multiple inference corrections. For our cross-

validation and adaptive random assignment simulations, we approximately reconstructed

the data using publicly available summary statistics. Specifically, the outcome was binary,

and we know the number of participants and estimated vaccination rate for each treatment.

So, if 2,365 participants received text message k and the estimated vaccination rate was 44%,

there are 1,041 ”1”s and 1324 ”0”’s for that treatment.

4.4 Simulation strategy

We began each simulation by bootstrapping the original data, stratifying by treatment.

Next, we simulated assigning participants to treatments by sampling observations from the

bootstrapped data. A naive approach to assigning a participant to treatment k would be to

sample a participant assigned to treatment θk in the bootstrapped data. This naive approach

would imply that the ”ground truth” effects are the sample means of the bootstrapped data.

However, as we argued in Section 1.2 on fictitious variation, sample means exaggerate the

variability in treatment effects.

Instead of using the naive approach, we used a Bayesian-weighted sampling procedure

to ensure the distribution of effects in our simulations was similar to the true distribution

of effects. The Bayesian-weighted procedure begins with a Bayesian model µ̂Bayes = ŴX
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where Ŵ is estimated by empirical Bayes. We assigned a participant to treatment k in

our simulation by sampling a participant from treatment θj in the bootstrapped data with

probability Ŵi,j. This ensured that the ”ground truth” effects in our simulation were the

empirical Bayes estimates µ̂Bayes.

To estimate Ŵ , we start with a normal-prior, normal-likelihood model like in Section

1.2. That is, we assume the true effects follow a normal distribution µ ∼ N (µ01, σ
2
0I) where

1 is a K × 1 vector of 1’s. The OLS estimates based on the bootstrapped data also follow a

normal distribution X|µ ∼ N (µ,Σ).

Because we do not know the prior parameters µ0, σ
2
0, we estimate them using maximum

likelihood. Using standard expression for maximum likelihood estimation, we estimate the

prior mean as

µ̂0 = (1T T̂−11)−11T T̂−1X

where T̂ := Σ + σ̂2I.

Using standard expressions for a normal-prior, normal-likelihood Bayesian model, the

estimated effects are

µ̂Bayes = µ̂01+ (I− ξ̂)(X − µ̂01)

where ξ̂ := ΣT̂−1.

Note that we can write our Bayesian estimates in terms of a weight matrix µ̂Bayes = ŴX

where

Ŵ :=
(
I− ξ̂

(
I− 1(1T T̂−11)−11T T̂−1

))
.
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4.5 Selection strategy

Researchers often select the best-performing treatment as the treatment with the highest

OLS point estimate. However, this is not necessarily the best way to select treatments

when using adaptive random assignment. For example, successive rejects selects the best-

performing treatment by eliminating treatments after each succession until only one remains.

Similarly, we find that Bayesian selection (whereby we select the best-performing treat-

ment based on empirical Bayes point estimates instead of by OLS point estimates) makes

exploration sampling more effective. Bayesian selection is often more effective when the

treatment effect estimates are heteroskedastic (i.e., when the estimated effects have different

standard errors) [Gu and Koenker, 2020]. Estimates will be heteroskedastic when assigning

different numbers of participants to each treatment. Because adaptive random assignment

assigns different numbers of participants to each condition, we use Bayesian selection to

select the best-performing treatment in our simulations.

The conditional estimator used to construct hybrid confidence intervals assumes the best-

performing treatment is selected using OLS estimates. Because this is not how we select the

best-performing treatment when using adaptive random assignment, we report projection

confidence intervals in our simulation and experiment results. As we discuss in section

1.1 and verify in Appendix 5, projection confidence intervals have correct coverage for all

treatments and do not depend on the selection mechanism. However, our simulation and

experiment results are nearly identical using projection and hybrid confidence intervals (see

Appendix 5).
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Figure 8: Length of the 95% confidence interval for the best-performing treatment in simu-
lations.

5 Appendix A. Confidence interval length and cover-

age after adaptive simulations
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Figure 9: Coverage probability for the 95% confidence interval for the best-performing treat-
ment in simulations.
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