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Abstract

There are often many different policies or treatments that we could use to affect a target

outcome. For example, a pharmacy could send many different text messages to its cus-

tomers reminding them to get a flu vaccine. However, we often have no theoretical basis

to know which treatments work best in a given context or how effective they will be.

Researchers have attempted to solve this problem by simultaneously testing many treat-

ments (usually ten or more) in a single, large-scale experiment known as a megastudy.

Unfortunately, the effects of social science treatments are often so similar that megas-

tudies are vastly underpowered, even with tens or hundreds of thousands of partici-

pants. We document this problem in three prominent megastudies recently published in

top journals. Specifically, we show that we should be highly uncertain about the best-

performing treatment’s effectiveness and that the treatment effects are more similar

than conventional estimates suggest. We then show that megastudies can substantially

increase their power using adaptive random assignment algorithms which dispropor-

tionately assign participants to more promising treatments. Most importantly, we

provide an open-research software package for running online megastudies using adap-

tive random assignment documented here https://dsbowen.gitlab.io/hemlock/1.
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1 Introduction

There are often many different policies or treatments that we could use to affect a target

outcome. For example, a pharmacy could send many different text messages to its customers

reminding them to get a flu vaccine. However, we often have no theoretical basis to know

which treatments work best in a given context or how effective they will be. Recent research

suggests that individual behavioral scientists predict which of two behavioral interventions

is more effective with only 65% accuracy [Otis, 2022]. Additionally, simple heuristics like

“behavioral interventions have no effect” predict treatment effects at least as well as pro-

fessional behavioral scientists [Bowen, 2022a]. These findings highlight the need for better

social science experiments.

Researchers have attempted to solve this problem by simultaneously testing many treat-

ments (usually ten or more) in a single, large-scale experiment known as a megastudy [Milk-

man et al., 2021a]. Megastudies have two advantages over the traditional approach to science

[Milkman et al., 2021a, Cortese, 2019]. First, megastudies aim to accelerate scientific research

by testing many treatments simultaneously. It is faster to test many treatments in a single,

large-scale study than to test one treatment at a time across many small-scale studies. Sec-

ond, megastudies provide a level playing field for many different treatments. Levelling the

playing field allows for more direct comparisons between treatments than separate studies,

which may use different populations, tasks, and target outcomes.

Researchers have used megastudies to test the effectiveness of many text messages re-

minding patients to get vaccinated [Milkman et al., 2021b, 2022, Banerjee et al., 2021],

behavioral nudges encouraging 24 Hour Fitness customers to exercise more often [Milkman

et al., 2021a], monetary and social incentives to exert effort [DellaVigna and Pope, 2018],

behavioral interventions to decrease implicit racial bias [Lai et al., 2014], donation match-

ing schemes to increase charitable giving [Karlan and List, 2007], job training programs to

increase employment among refugees in Jordan [Caria et al., 2020], and interventions to

improve tax collection in Poland [Hernandez et al., 2017].
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Unfortunately, the effects of social science treatments are often so similar that megas-

tudies are vastly underpowered, even with tens or hundreds of thousands of participants.

We suggest this problem has gone unnoticed because megastudy researchers often report

traditional estimates (like ordinary least squares) as their primary analysis [Milkman et al.,

2021a,b, 2022, DellaVigna and Pope, 2018, Schwitzgebel, 2019]. This leads researchers to

overestimate the best-performing treatment’s effectiveness and exaggerate differences be-

tween treatment effects.

For example, consider a recent megastudy that used text message treatments to encourage

Penn Medicine and Geisinger Health patients to get a flu vaccine. The megastudy randomly

assigned participants to one of 19 treatments or a control condition, with about 2,365 par-

ticipants per condition. The treatments differed in the text message phrasing, timing, and

the number of messages sent. Participants in the control condition had a vaccination rate of

42%. The average treatment increased vaccination rates by 2.1 percentage points to 44.1%.

Participants assigned to the best-performing treatment had a vaccination rate 4.6 percentage

points higher than the control condition. Figure 1 of the Penn-Geisinger flu megastudy pa-

per displays the treatment effects as estimated by ordinary least squares (OLS). The authors

reported that their “best-performing treatment [increased flu vaccinations] by an estimated

[4.6 / 42 =] 11%.” Seeing a plot of the OLS estimates, readers of this paper might con-

clude that the best-performing treatment is 4.6 / 2.1 = 2.2 times as effective as the average

treatment.

For comparison, imagine running a “coin-flipping” megastudy. We will ask 19 people to

flip the same “treatment coin” and one to flip a “control coin.” Each person flips their coin

about 2,365 times. The true probability of getting heads with the control coin is 42%. The

true probability of getting heads with the treatment coin is 2.1 percentage points higher;

44.1%. Notice that we are simulating what the results of the Penn-Geisinger flu megastudy

would have looked like if all the treatments had the same effect. Across 1,000 simulations of

the coin-flipping megastudy, the “best-performing coin-flipper” gets heads 10% more often
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than the \control coin-ipper" on average. Following the Penn-Geisinger u megastudy

paper, we would report that our best-performing coin-ipper increased our probability of

getting heads by an estimated 10%. Across the simulations, OLS estimates would seem

to show that the best-performing coin-ipper is 2.3 times as \e�ective" at increasing our

probability of getting heads compared to the average person ipping the treatment coin.

These conclusions are clearly incorrect. The best-performing coin-ipper is not better at

ipping coins than anyone else and is only 2.1 / 42 = 5% more likely to get heads than the

control coin-ipper. Given how similar the coin-ipping megastudy's estimates are to those

of the Penn-Geisinger u megastudy, the Penn-Geisinger u megastudy's conclusions may

also be incorrect.

1.1 The winner's curse

The coin-ipping megastudy demonstrates a general point: conventional estimates like OLS

are incorrect when estimating megastudy e�ects. One way in which conventional estimates

are inaccurate is thewinner's curse. According to the winner's curse, whenever we select the

treatment that appears most e�ective based on noisy estimates, the conventional estimate

of that treatment's e�ect is upward-biased [Andrews et al., 2019, 2022]. In our coin-ipping

megastudy, the best-performing coin-ipper was only 2.1 percentage points more likely to

get heads than the control coin-ipper. However, in our simulations, OLS estimated that

the best-performing coin-ipper was 4.0 percentage points more likely to get heads than

the control coin-ipper. For the same reason, the conventional con�dence interval will have

incorrect coverage. For example, the best-performing treatment's true e�ect will fall within

its 95% OLS con�dence interval less than 95% of the time.

We use two types of con�dence intervals to address this problem: projection [Romano

and Wolf, 2005, Kitagawa and Tetenov, 2018] and hybrid [Andrews et al., 2019, 2022] con�-

dence intervals implemented in themultiple-inference statistics package [Bowen, 2022b].

Projection and hybrid con�dence intervals lengthen conventional con�dence intervals to ac-
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Figure 1: Comparison of OLS, projection, and hybrid con�dence intervals for the best-
performing treatment in the Penn-Geisinger u megastudy. The red vertical line is the
average e�ect across all treatments.

count for the uncertainty introduced by selecting the best-performing treatment (see section

4.1 for details). Both have correct coverage, meaning that the best-performing treatment's

true e�ect falls within the 95% projection and hybrid con�dence intervals 95% of the time.

Figure 1 shows that the 95% projection and hybrid con�dence intervals for the best-

performing treatment in the Penn-Geisinger u megastudy are longer than the 95% OLS

con�dence interval. According to OLS, there is a 95% chance that the vaccination rate of

the best-performing text message nudge is greater than 44.1% - the average vaccination rate

across all treatments. However, the projection and hybrid con�dence intervals suggest that

the best-performing treatment's vaccination rate may be as low as 43.5%.

We apply projection and hybrid con�dence intervals to two other megastudies for robust-

ness. The second megastudy we analyzed (the \exercise megastudy") used 53 behavioral

nudges to encourage 60,000 24-Hour Fitness customers to exercise more [Milkman et al.,

2021a]. The treatments involved planning, reminders, microincentives, and other interven-

tions. The researchers de�ned the treatment e�ects as the increase in weekly gym visits

during a four-week intervention period compared to a control condition.

The third megastudy we analyzed (the \Walmart u megastudy") was similar to the

Penn-Geisinger u megastudy. It used 22 text-message treatments to encourage 680,000
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Table 1: Winner's curse

Lower bound of 95% CI

Megastudy Avg. outcome OLS Projection Hybrid

Penn-Geisinger u 0.439 0.446 0.437 0.438
Exercise 0.166 0.204 0.070 -0.027
Walmart u 0.314 0.318 0.315 0.314

Comparison of the lower bound of the 95% OLS, projection, and hybrid con�dence intervals for the best-performing treatments. The

Penn-Geisinger and Walmart u megastudies measure vaccination rates. The exercise megastudy measures the increase in weekly gym

visits compared to a control condition during a four-week intervention period.

Walmart customers to get a u vaccine [Milkman et al., 2022]. As in the Penn-Geisinger u

megastudy, the treatments di�ered in the text message phrasing, timing, and the number of

messages sent. The researchers de�ned treatment e�ects as the increase in vaccination rates

compared to participants in a control condition who did not receive a text.

Table 1 shows the 95% OLS, projection, and hybrid con�dence intervals for all three

megastudies we analyzed. According to OLS, there is a 95% chance that the best-performing

behavioral nudge will increase exercise by at least one gym visit every �ve weeks compared

to the control condition. However, the projection con�dence interval suggests that the best-

performing nudge may increase exercise by as little as one gym visit every 14 weeks, and

the hybrid con�dence interval suggests that the best-performing nudge may even decrease

exercise.

The OLS, projection, and hybrid con�dence intervals are similar for the Walmart u

megastudy. All three agree that the vaccination rate for the best-performing text message

nudge is at least 31.4-31.8%. For comparison, the average vaccination rate across all treat-

ments was 31.4%.

1.2 Fictitious variation

Another problem with OLS estimates in the context of megastudies is�ctitious variation .

Fictitious variation makes it seem like some treatments are much more e�ective than others,
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even when the treatment e�ects are similar. In our coin-ipping megastudy, all treatment

coin-ippers had the same probability of getting heads. However, OLS estimates made it

seem like some people were much better at ipping coins than others.

We use Bayesian shrinkage estimators to address this problem. Bayesian shrinkage esti-

mators begin with a prior distribution and then estimate a posterior distribution by \shrink-

ing" the OLS estimates towards the mean of the prior distribution. Many Bayesian estima-

tors have a lowerrisk (expected mean squared error) than OLS. The James-Stein Bayesian

estimator dominatesOLS, meaning it has a lower risk no matter the true treatment e�ects

[James and Stein, 1992, Stein et al., 1956].

For robustness, we apply at least four types of Bayesian estimators to each megastudy

dataset (see Section 4.2 for details) [Stein et al., 1956, James and Stein, 1992, Dimmery et al.,

2019, Bock, 1975, Cai et al., 2021, Brown and Greenshtein, 2009]. Because these Bayesian

estimators sometimes give di�erent results, we use 50-by-2 repeated cross-validation, strati-

fying by treatment and grouping by participant, to determine which estimator is best. We

measure cross-validation performance using mean squared error, mean absolute error, and

log-likelihood.

Figure 2 shows that the OLS estimates are more spread out than those of �ve Bayesian

estimators for the Penn-Geisinger u megastudy. According to OLS, the standard deviation

of the true vaccination rates is 13 people per thousand. However, according to the Bayesian

estimators, the standard deviation is at most �ve people thousand. Bayesian estimators

shrink the estimated vaccination rates towards the mean (i.e., the average vaccination rate

across all treatments) by at least 71% on average across all treatments.

Figure 3 plots the cross-validation mean squared error for OLS and Bayesian estima-

tors for the Penn-Geisinger u megastudy. The Bayesian estimator with the best cross-

validation performance on all three metrics (mean squared error, mean absolute error, and

log-likelihood) was the beta-binomial model (a beta-prior, binomial-likelihood model �t us-

ing maximum likelihood estimation). This estimator shrinks the estimated vaccination rates
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Figure 2: Comparison of OLS and empirical Bayes estimates for the Penn-Geisinger u
megastudy.

Figure 3: Comparison of OLS and Bayesian estimators in terms of cross-validation mean
squared error for the Penn-Geisinger u megastudy.

towards the mean by 85%. The second-best Bayesian estimator according to all three metrics

was the normal model (a normal-prior, normal-likelihood model �t using maximum likelihood

estimation). This estimator shrinks vaccination rates towards the mean by 88%.

Notably, the Penn-Geisinger u megastudy fails to reject the null hypothesis that all

text message treatments are equally e�ective [Milkman et al., 2021b]. Bayesian estimates

are therefore more consistent with the Penn-Geisinger u megastudy's �ndings than OLS

estimates. They are also consistent with more recent research suggesting that the language

used by the best-performing text message is no more e�ective than simply informing a patient

that a vaccine is available [Buttenheim et al., 2022].
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Table 2: Fictitious variation

Megastudy Estimator SD Shrinkage MSE

Penn-Geisinger u OLS 0.013 0% 4.11e-4
Normal (MLE 0.003 88% 2.61e-4
James-Stein 0.005 75% 2.64e-4
Bock 0.005 71% 2.66e-4
Nonparametric 0.004 78% 2.71e-4
BetaBinom (MLE) 0.004 85% 2.59e-4

Exercise OLS 0.130 0% 3.09e-2
Normal (MLE) 0.044 77% 1.97e-2
James-Stein 0.108 20% 2.62e-2
Bock 0.121 8% 2.88e-2
Nonparametric 0.050 77% 2.01e-2

Walmart u OLS 0.006 0% 2.93e-5
Normal (MLE) 0.005 24% 2.53e-5
James-Stein 0.005 20% 2.51e-5
Bock 0.005 19% 2.51e-5
Nonparametric 0.005 7% 2.45e-5
BetaBinom (MLE) 0.005 24% 2.51e-5

Comparison of OLS and Bayesian estimators in terms of the standard deviation of e�ects (SD), average shrinkage, and cross-validation

mean squared error (MSE). The bold lines are the estimators with the lowest cross-validation mean squared error for each study.

Table 2 shows the estimated standard deviations, shrinkage, and cross-validation mean

squared error for all three megastudies according to OLS and Bayesian estimators. Bayesian

estimators shrink the estimated increase in weekly gym visits by 8%-77% for the exercise

megastudy. Speci�cally, the Bock and James-Stein estimators exhibit slight shrinkage (8%

and 20%, respectively). In contrast, the normal and nonparametric models both exhibit 77%

shrinkage. Cross-validation suggests that the normal and nonparametric models are more

accurate than the Bock and James-Stein models, beating them on all three performance met-

rics at least 91% of the time across all repetitions and folds. Therefore, the most appropriate

amount of shrinkage is likely 77%.

Bayesian estimators shrink the estimated vaccination rates by 7-24% in the Walmart u

megastudy. The estimator that performed best on all three cross-validation metrics was the

nonparametric model. This model exhibits only 7% shrinkage.

One interpretation of the Walmart u megastudy results is that, with 680,000 participants
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